Skip to main content

Bengali Natural Language Processing(BNLP)

BNLP is a natural language processing toolkit for Bengali Language. This tool will help you to tokenize Bengali text, Embedding Bengali words, construct neural model for Bengali NLP purposes.

Current Features

Installation

  • pypi package installer(python 3.5, 3.6, 3.7 tested okay)

    pip install bnlp_toolkit

  • Local

    $git clone https://github.com/sagorbrur/bnlp.git
    $cd bnlp
    $python setup.py install

Pretrained Model

Training Details

  • All three model trained with Bengali Wikipedia Dump Dataset
  • SentencePiece Training Vocab Size=50000
  • Fasttext trained with total words = 20M, vocab size = 1171011, epoch=50, embedding dimension = 300 and the training loss = 0.318668,
  • Word2Vec word embedding dimension = 300
  • To Know Bengali GloVe Wordvector and training process follow this repository

Tokenization

  • Bengali SentencePiece Tokenization

    • tokenization using trained model
      from bnlp.sentencepiece_tokenizer import SP_Tokenizer

      bsp = SP_Tokenizer()
      model_path = "./model/bn_spm.model"
      input_text = "আমি ভাত খাই। সে বাজারে যায়।"
      tokens = bsp.tokenize(model_path, input_text)
      print(tokens)

    • Training SentencePiece
      from bnlp.sentencepiece_tokenizer import SP_Tokenizer

      bsp = SP_Tokenizer(is_train=True)
      data = "test.txt"
      model_prefix = "test"
      vocab_size = 5
      bsp.train_bsp(data, model_prefix, vocab_size)

  • Basic Tokenizer

    from bnlp.basic_tokenizer import BasicTokenizer
    basic_t = BasicTokenizer(False)
    raw_text = "আমি বাংলায় গান গাই।"
    tokens = basic_t.tokenize(raw_text)
    print(tokens)

    # output: ["আমি", "বাংলায়", "গান", "গাই", "।"]

  • NLTK Tokenization

    from bnlp.nltk_tokenizer import NLTK_Tokenizer

    text = "আমি ভাত খাই। সে বাজারে যায়। তিনি কি সত্যিই ভালো মানুষ?"
    bnltk = NLTK_Tokenizer(text)
    word_tokens = bnltk.word_tokenize()
    sentence_tokens = bnltk.sentence_tokenize()
    print(word_tokens)
    print(sentence_tokens)

    # output
    # word_token: ["আমি", "ভাত", "খাই", "।", "সে", "বাজারে", "যায়", "।", "তিনি", "কি", "সত্যিই", "ভালো", "মানুষ", "?"]
    # sentence_token: ["আমি ভাত খাই।", "সে বাজারে যায়।", "তিনি কি সত্যিই ভালো মানুষ?"]

Word Embedding

  • Bengali Word2Vec

    • Generate Vector using pretrain model

      from bnlp.bengali_word2vec import Bengali_Word2Vec

      bwv = Bengali_Word2Vec()
      model_path = "model/bengali_word2vec.model"
      word = 'আমার'
      vector = bwv.generate_word_vector(model_path, word)
      print(vector.shape)
      print(vector)

    • Find Most Similar Word Using Pretrained Model

      from bnlp.bengali_word2vec import Bengali_Word2Vec

      bwv = Bengali_Word2Vec()
      model_path = "model/bengali_word2vec.model"
      word = 'আমার'
      similar = bwv.most_similar(model_path, word)
      print(similar)

    • Train Bengali Word2Vec with your own data

      from bnlp.bengali_word2vec import Bengali_Word2Vec
      bwv = Bengali_Word2Vec(is_train=True)
      data_file = "test.txt"
      model_name = "test_model.model"
      vector_name = "test_vector.vector"
      bwv.train_word2vec(data_file, model_name, vector_name)


  • Bengali FastText

    • Generate Vector Using Pretrained Model

      from bnlp.bengali_fasttext import Bengali_Fasttext

      bft = Bengali_Fasttext()
      word = "গ্রাম"
      model_path = "model/bengali_fasttext.bin"
      word_vector = bft.generate_word_vector(model_path, word)
      print(word_vector.shape)
      print(word_vector)


    • Train Bengali FastText Model

      from bnlp.bengali_fasttext import Bengali_Fasttext

      bft = Bengali_Fasttext(is_train=True)
      data = "data.txt"
      model_name = "saved_model.bin"
      epoch = 50
      bft.train_fasttext(data, model_name, epoch) # epoch not implement in pypi yet
      # bft.train_fasttext(data, model_name) in pypi now

  • Bengali GloVe Word Vectors

    We trained glove model with bengali data(wiki+news articles) and published bengali glove word vectors
    You can download and use it on your different machine learning purposes.

    from bnlp.glove_wordvector import BN_Glove
    glove_path = "bn_glove.39M.100d.txt"
    word = "গ্রাম"
    bng = BN_Glove()
    res = bng.closest_word(glove_path, word)
    print(res)
    vec = bng.word2vec(glove_path, word)
    print(vec)

Issue

  • if ModuleNotFoundError: No module named 'fasttext' problem arise please do the next line

pip install fasttext

  • if nltk issue arise please do the following line before importing bnlp
import nltk
nltk.download("punkt")