Skip to main content

Bengali Natural Language Processing(BNLP)

BNLP is a natural language processing toolkit for Bengali Language. This tool will help you to tokenize Bengali text, Embedding Bengali words, Bengali POS Tagging, Bengali Name Entity Recognition, Construct Neural Model for Bengali NLP purposes.

NB: Any Researcher who refer this tool in his/her paper please let us know, we will include paper link here

Current Features

Installation

PIP installer(python 3.5, 3.6, 3.7 tested okay)

pip install bnlp_toolkit

Local Installer

$git clone https://github.com/sagorbrur/bnlp.git
$cd bnlp
$python setup.py install

Pretrained Model

Training Details

  • Sentencepiece, Word2Vec, Fasttext, GloVe model trained with Bengali Wikipedia Dump Dataset
  • SentencePiece Training Vocab Size=50000
  • Fasttext trained with total words = 20M, vocab size = 1171011, epoch=50, embedding dimension = 300 and the training loss = 0.318668,
  • Word2Vec word embedding dimension = 300
  • To Know Bengali GloVe Wordvector and training process follow this repository
  • Bengali CRF POS Tagging was training with nltr dataset with 80% accuracy.
  • Bengali CRF NER Tagging was train with this data with 90% accuracy.

Tokenization

  • Bengali SentencePiece Tokenization

    • tokenization using trained model
      from bnlp.sentencepiece_tokenizer import SP_Tokenizer

      bsp = SP_Tokenizer()
      model_path = "./model/bn_spm.model"
      input_text = "আমি ভাত খাই। সে বাজারে যায়।"
      tokens = bsp.tokenize(model_path, input_text)
      print(tokens)
      text2id = bsp.text2id(model_path, input_text)
      print(text2id)
      id2text = bsp.id2text(model_path, text2id)
      print(id2text)

    • Training SentencePiece
      from bnlp.sentencepiece_tokenizer import SP_Tokenizer

      bsp = SP_Tokenizer()
      data = "test.txt"
      model_prefix = "test"
      vocab_size = 5
      bsp.train_bsp(data, model_prefix, vocab_size)

  • Basic Tokenizer

    from bnlp.basic_tokenizer import BasicTokenizer
    basic_t = BasicTokenizer()
    raw_text = "আমি বাংলায় গান গাই।"
    tokens = basic_t.tokenize(raw_text)
    print(tokens)

    # output: ["আমি", "বাংলায়", "গান", "গাই", "।"]

  • NLTK Tokenization

    from bnlp.nltk_tokenizer import NLTK_Tokenizer

    text = "আমি ভাত খাই। সে বাজারে যায়। তিনি কি সত্যিই ভালো মানুষ?"
    bnltk = NLTK_Tokenizer()
    word_tokens = bnltk.word_tokenize(text)
    sentence_tokens = bnltk.sentence_tokenize(text)
    print(word_tokens)
    print(sentence_tokens)

    # output
    # word_token: ["আমি", "ভাত", "খাই", "।", "সে", "বাজারে", "যায়", "।", "তিনি", "কি", "সত্যিই", "ভালো", "মানুষ", "?"]
    # sentence_token: ["আমি ভাত খাই।", "সে বাজারে যায়।", "তিনি কি সত্যিই ভালো মানুষ?"]

Word Embedding

  • Bengali Word2Vec

    • Generate Vector using pretrain model

      from bnlp.bengali_word2vec import Bengali_Word2Vec

      bwv = Bengali_Word2Vec()
      model_path = "model/bengali_word2vec.model"
      word = 'আমার'
      vector = bwv.generate_word_vector(model_path, word)
      print(vector.shape)
      print(vector)

    • Find Most Similar Word Using Pretrained Model

      from bnlp.bengali_word2vec import Bengali_Word2Vec

      bwv = Bengali_Word2Vec()
      model_path = "model/bengali_word2vec.model"
      word = 'আমার'
      similar = bwv.most_similar(model_path, word)
      print(similar)

    • Train Bengali Word2Vec with your own data

      from bnlp.bengali_word2vec import Bengali_Word2Vec
      bwv = Bengali_Word2Vec(True)
      data_file = "test.txt"
      model_name = "test_model.model"
      vector_name = "test_vector.vector"
      bwv.train_word2vec(data_file, model_name, vector_name)


  • Bengali FastText

    • Generate Vector Using Pretrained Model

      from bnlp.bengali_fasttext import Bengali_Fasttext

      bft = Bengali_Fasttext()
      word = "গ্রাম"
      model_path = "model/bengali_fasttext.bin"
      word_vector = bft.generate_word_vector(model_path, word)
      print(word_vector.shape)
      print(word_vector)


    • Train Bengali FastText Model

      from bnlp.bengali_fasttext import Bengali_Fasttext

      bft = Bengali_Fasttext()
      data = "data.txt"
      model_name = "saved_model.bin"
      epoch = 50
      bft.train_fasttext(data, model_name, epoch)
  • Bengali GloVe Word Vectors

    We trained glove model with bengali data(wiki+news articles) and published bengali glove word vectors
    You can download and use it on your different machine learning purposes.

    from bnlp.glove_wordvector import BN_Glove
    glove_path = "bn_glove.39M.100d.txt"
    word = "গ্রাম"
    bng = BN_Glove()
    res = bng.closest_word(glove_path, word)
    print(res)
    vec = bng.word2vec(glove_path, word)
    print(vec)

Bengali POS Tagging

  • Bengali CRF POS Tagging

    • Find Pos Tag Using Pretrained Model

      from bnlp.pos import POS
      bn_pos = POS()
      model_path = "model/bn_pos.pkl"
      text = "আমি ভাত খাই।"
      res = bn_pos.tag(model_path, text)
      print(res)
      # [('আমি', 'PPR'), ('ভাত', 'NC'), ('খাই', 'VM'), ('।', 'PU')]

    • Train POS Tag Model

      from bnlp.pos import POS
      bn_pos = POS()
      model_name = "pos_model.pkl"
      tagged_sentences = [[('রপ্তানি', 'JJ'), ('দ্রব্য', 'NC'), ('-', 'PU'), ('তাজা', 'JJ'), ('ও', 'CCD'), ('শুকনা', 'JJ'), ('ফল', 'NC'), (',', 'PU'), ('আফিম', 'NC'), (',', 'PU'), ('পশুচর্ম', 'NC'), ('ও', 'CCD'), ('পশম', 'NC'), ('এবং', 'CCD'),('কার্পেট', 'NC'), ('৷', 'PU')], [('মাটি', 'NC'), ('থেকে', 'PP'), ('বড়জোর', 'JQ'), ('চার', 'JQ'), ('পাঁচ', 'JQ'), ('ফুট', 'CCL'), ('উঁচু', 'JJ'), ('হবে', 'VM'), ('৷', 'PU')]]

      bn_pos.train(model_name, tagged_sentences)

Bengali NER

  • Bengali CRF NER

    • Find NER Tag Using Pretrained Model

      from bnlp.ner import NER
      bn_ner = NER()
      model_path = "model/bn_ner.pkl"
      text = "সে ঢাকায় থাকে।"
      result = bn_ner.tag(model_path, text)
      print(result)
      # [('সে', 'O'), ('ঢাকায়', 'S-LOC'), ('থাকে', 'O')]

    • Train NER Tag Model

      from bnlp.ner import NER
      bn_ner = NER()
      model_name = "ner_model.pkl"
      tagged_sentences = [[('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')]]

      bn_ner.train(model_name, tagged_sentences)

Issue

  • if ModuleNotFoundError: No module named 'fasttext' problem arise please do the next line

pip install fasttext

  • if nltk issue arise please do the following line before importing bnlp
import nltk
nltk.download("punkt")